High-Yield Synthesis of Helical Carbon Nanofibers Using Iron Oxide Fine Powder as a Catalyst

نویسندگان

  • Yoshiyuki Suda
  • Koji Maruyama
  • Tetsuo Iida
  • Hirofumi Takikawa
  • Kazuki Shimizu
  • Yoshito Umeda
  • Daniele Gozzi
چکیده

Carbon nanocoil (CNC), which is synthesized by a catalytic chemical vapor deposition (CCVD) method, has a coil diameter of 300–900 nm and a length of several tens of μm. Although it is very small, CNC is predicted to have a high mechanical strength and hence is expected to have a use in nanodevices such as electromagnetic wave absorbers and field emitters. For nanodevice applications, it is necessary to synthesize CNC in high yield and purity. In this study, we improved the conditions of catalytic layer formation and CCVD. Using optimized CVD conditions, a CNC layer with a thickness of >40 μm was grown from a SnO2/Fe2O3/SnO2 catalyst on a substrate, and its purity increased to 81% ± 2%.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Light promoted synthesis of 1,8-dioxooctahydroxanthenes using sulphated tin oxide as solid support catalyst

In the past few years multi component reactions have captured the attention of synthetic chemists as they provide  easy  access  to diverse  complex  organic molecules through  carbon -  carbon   and  carbon - heteroatom  bond  formations  in tandem manner with simple easy  to carry out  reaction  conditions in short  time. 1,8-dioxo-octahydroxanthene is a significant class of oxygen containing...

متن کامل

Synthesis and purification of Carbon nanotubes

In this study, multi wall carbon nanotubes (MWCNTs) were synthesized by Chemical vapor deposition (CVD) method using two different catalysts (Fe nanoparticles) and (Ni nanoparticles) with  two different substrates: Quartz and Alumina. Acetylene gas was used as a carbon source and Argon as a carrier gas at different temperatures and different times to study the effects of these parameters on CNT...

متن کامل

Synthesis and purification of Carbon nanotubes

In this study, multi wall carbon nanotubes (MWCNTs) were synthesized by Chemical vapor deposition (CVD) method using two different catalysts (Fe nanoparticles) and (Ni nanoparticles) with  two different substrates: Quartz and Alumina. Acetylene gas was used as a carbon source and Argon as a carrier gas at different temperatures and different times to study the effects of these parameters on CNT...

متن کامل

Selective catalytic reduction of sulfur dioxide by carbon monoxide over iron oxide supported on activated carbon

The selective reduction of sulfur dioxide with carbon monoxide to elemental sulfur was studied over ACsupported transition-metal oxide catalysts. According to the study, Fe2O3 /AC was the most active catalyst among the 4 AC-supported catalysts tested. By using Fe2O3 /AC, the best catalyst, when the feed conditions were properly optimized (CO/SO2 molar ratio = 2:1; sulfidation temperature, 400 ◦...

متن کامل

Synthesis of MWCNTs Using Monometallic and Bimetallic Combinations of Fe, Co and Ni Catalysts Supported on Nanometric SiC via TCVD

Nanometric Carbid Silicon (SiC) supported monometallic and bimetallic catalysts containing Fe, Co, Ni transition metals were prepared by wet impregnation method. Multiwall carbon nanotubes (MWCNTs) were synthesized over the prepared catalysts from catalytic decomposition of acetylene at 850°C by thermal chemical vapor deposition (TCVD) technique. The synthesized nanomaterials (catalysts and CNT...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015