High-Yield Synthesis of Helical Carbon Nanofibers Using Iron Oxide Fine Powder as a Catalyst
نویسندگان
چکیده
Carbon nanocoil (CNC), which is synthesized by a catalytic chemical vapor deposition (CCVD) method, has a coil diameter of 300–900 nm and a length of several tens of μm. Although it is very small, CNC is predicted to have a high mechanical strength and hence is expected to have a use in nanodevices such as electromagnetic wave absorbers and field emitters. For nanodevice applications, it is necessary to synthesize CNC in high yield and purity. In this study, we improved the conditions of catalytic layer formation and CCVD. Using optimized CVD conditions, a CNC layer with a thickness of >40 μm was grown from a SnO2/Fe2O3/SnO2 catalyst on a substrate, and its purity increased to 81% ± 2%.
منابع مشابه
Light promoted synthesis of 1,8-dioxooctahydroxanthenes using sulphated tin oxide as solid support catalyst
In the past few years multi component reactions have captured the attention of synthetic chemists as they provide easy access to diverse complex organic molecules through carbon - carbon and carbon - heteroatom bond formations in tandem manner with simple easy to carry out reaction conditions in short time. 1,8-dioxo-octahydroxanthene is a significant class of oxygen containing...
متن کاملSynthesis and purification of Carbon nanotubes
In this study, multi wall carbon nanotubes (MWCNTs) were synthesized by Chemical vapor deposition (CVD) method using two different catalysts (Fe nanoparticles) and (Ni nanoparticles) with two different substrates: Quartz and Alumina. Acetylene gas was used as a carbon source and Argon as a carrier gas at different temperatures and different times to study the effects of these parameters on CNT...
متن کاملSynthesis and purification of Carbon nanotubes
In this study, multi wall carbon nanotubes (MWCNTs) were synthesized by Chemical vapor deposition (CVD) method using two different catalysts (Fe nanoparticles) and (Ni nanoparticles) with two different substrates: Quartz and Alumina. Acetylene gas was used as a carbon source and Argon as a carrier gas at different temperatures and different times to study the effects of these parameters on CNT...
متن کاملSelective catalytic reduction of sulfur dioxide by carbon monoxide over iron oxide supported on activated carbon
The selective reduction of sulfur dioxide with carbon monoxide to elemental sulfur was studied over ACsupported transition-metal oxide catalysts. According to the study, Fe2O3 /AC was the most active catalyst among the 4 AC-supported catalysts tested. By using Fe2O3 /AC, the best catalyst, when the feed conditions were properly optimized (CO/SO2 molar ratio = 2:1; sulfidation temperature, 400 ◦...
متن کاملSynthesis of MWCNTs Using Monometallic and Bimetallic Combinations of Fe, Co and Ni Catalysts Supported on Nanometric SiC via TCVD
Nanometric Carbid Silicon (SiC) supported monometallic and bimetallic catalysts containing Fe, Co, Ni transition metals were prepared by wet impregnation method. Multiwall carbon nanotubes (MWCNTs) were synthesized over the prepared catalysts from catalytic decomposition of acetylene at 850°C by thermal chemical vapor deposition (TCVD) technique. The synthesized nanomaterials (catalysts and CNT...
متن کامل